已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DO

已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DO

题型:不详难度:来源:
已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图1,若∠AOC=30°,求∠DOE的度数;
(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);
(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置.
①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;
②在∠AOC的内部有一条射线OF,满足:∠AOC-4∠AOF=2∠BOE+∠AOF,
试确定∠AOF与∠DOE的度数之间的关系,说明理由.
答案
(1)由已知得∠BOC=180°-∠AOC=150°,
又∠COD是直角,OE平分∠BOC,
∴∠DOE=∠COD-
1
2
∠BOC=90°-
1
2
×150°=15°;

(2)由(1)∴∠DOE=∠COD-
1
2
∠BOC=90°,
∴∠DOE=90°-
1
2
(180°-∠AOC),
∴∠DOE=
1
2
∠AOC=
1
2
α;

(3)∠AOC=2∠DOE;
理由:∵∠COD是直角,OE平分∠BOC,
∴∠COE=∠BOE=90°-∠DOE,
则得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),
所以得:∠AOC=2∠DOE;
②4∠DOE-5∠AOF=180°
理由:设∠DOE=x,∠AOF=y,
左边=∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,
右边=2∠BOE+∠AOF=2(90-x)+y=180-2x+y,
所以,2x-4y=180-2x+y即4x-5y=180,
所以,4∠DOE-5∠AOF=180°.
举一反三
如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD
(1)如果∠AOD=40°
①那么根据______,可得∠BOC=______度.
②那么∠POF的度数是______度.
(2)图中除直角外,还有相等的角吗?请写出三对:
①______;
②______;
③______.
题型:不详难度:| 查看答案
如图,将一副三角板的直角顶点重合,摆在桌面上,若∠AOD=140°,则∠BOC=______度.
题型:不详难度:| 查看答案
著名数学教育家G.波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学好数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先观察、计算再填空.
已知:如图,OM平分∠AOB,ON平分∠BOC.
(1)当∠AOC=90°,∠BOC=70°时,∠MON=______;
(2)当∠AOC=80°,∠BOC=60°时,∠MON=______;
(3)当∠AOC=70°,∠BOC=50°时,∠MON=______;
(4)猜想:不论∠AOC和∠BOC的度数是多少,∠MON的度数总等于______度数的一半.
题型:不详难度:| 查看答案
如图,OB是∠AOC的角平分线,OD是∠COE的角平分线.∠DOE=______-______
(1)∠AOC=______+______;∠BOD=______+______;∠DOE=______-______;∠AOB=______-______;
(2)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?
(3)如果∠AOE=140°,∠COD=30°,那么∠AOB是多少度?
题型:不详难度:| 查看答案
用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是(  )
A.15°B.75°C.85°D.105°
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.