对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b。特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23}, (1)

对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b。特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23}, (1)

题型:解答题难度:困难来源:0119 期中题
对于正整数a,b,存在唯一一对整数q和r,使得a=bq+r,0≤r<b。特别地,当r=0时,称b能整除a,记作b|a,已知A={1,2,3,…,23},
(1)存在q∈A,使得2011=91q+r(0≤r<91),试求q,r的值;
(2)求证:不存在这样的函数f:A→{1,2,3},使得对任意的整数x,y∈A,若|x-y|∈{1,2,3},则f(x)≠f(y);
(3)若BA,card(B)=12(card(B)指集合B中的元素的个数),且存在a,b∈B,b<a,b|a,则称B为“和谐集”。求最大的m∈A,使含m的集合A的有12个元素的任意子集为“和谐集”,并说明理由。
答案
(1)解:因为
(2)证明:假设存在这样的函数f:A→{1,2,3},
使得对任意的整数


由已知a≠b,
由于
所以
不妨令,这里
同理,
因为{1,2,3}只有三个元素,所以
,与已知矛盾;
因此假设不成立,
即不存在这样的函数
使得对任意的整数

(3)解:当m=8时,记
记P=CMN,

显然对任意,不存在n≥3,使得成立,
故P是非“和谐集”,
此时
同样的,当时,存在含m的集合A的有12个元素的子集为非“和谐集”,因此m≤7;
下面证明:含7的任意集合A的有12个元素的子集为“和谐集”,

若1,14,21中之一为集合B的元素,显然为“和谐集”;
现考虑1,14,21都不属于集合B,
构造集合

以上每个集合中的元素都是倍数关系,
考虑的情况,也即B′中5个元素全都是B的元素,B中剩下6个元素必须从这5个集合中选取6个元素,那么至少有一个集合有两个元素被选,即集合B中至少有两个元素存在倍数关系;
综上所述,含7的任意集合A的有12个元素的子集B为“和谐集”,即m的最大值为7。
举一反三
设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是

[     ]

A.6
B.7
C.8
D.9
题型:单选题难度:简单| 查看答案
已知映射f:A→B,其中集合A={-3,-2,-1,0,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数是

[     ]

A.4
B.5
C.6
D.7
题型:单选题难度:简单| 查看答案
集合{x∈N+|x-3<2}的另一种表示法是

[     ]

A.{0,1,2,3,4}
B.{1,2,3,4}
C.{0,1,2,3,4,5}
D.{1,2,3,4,5}
题型:单选题难度:简单| 查看答案
设集合M={x|x≤7},a=,则下列结论正确的是

[     ]

A.{a}∈M
B.a∈M
C.aM
D.aM
题型:单选题难度:简单| 查看答案
已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是

[     ]

A.
B.或a=0
C.或a=0
D.
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.