试题分析:∵当x∈(-1,1]时,将函数化为方程x2+=1(y≥0), ∴图象为半个椭圆,其图象如图所示, 同时在坐标系中作出当x∈(1,3]得图象,再根据周期性作出函数其它部分的图象,
由图易知直线 y=与第二个椭圆(x-4)2+=1(y≥0)相交,而与第三个半椭圆(x-8)2+="1" (y≥0)无公共点时,方程恰有5个实数解, 将 y=代入(x-4)2+=1(y≥0)得,(9m2+1)x2-72m2x+135m2=0,令t=9m2(t>0), 则(t+1)x2-8tx+15t=0,由△=(8t)2-4×15t (t+1)>0,得t>15,由9m2>15,且m>0得 m >, 同样将 y=代入第三个椭圆方程(x-8)2+="1" (y≥0),由△<0可计算得 m<, 综上可知m∈,故选B。 点评:中档题,解的思路比较明确,首先数形结合,分析方程存在5个解时,的情况,通过建立方程组,利用判别式受到的限制进一步解题。 |