在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维方式.如从指数函数中可抽象出f(x1+x2)=f(x1)•f(x2)的性质;从对数函数中可抽象出f(x1
题型:填空题难度:一般来源:崇文区二模
在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维方式.如从指数函数中可抽象出f(x1+x2)=f(x1)•f(x2)的性质;从对数函数中可抽象出f(x1•x2)=f(x1)+f(x2)的性质,那么从函数______.(写出一个具体函数即可)可抽象出f(x1+x2)=f(x1)+f(x2)的性质. |
答案
令y=f(x)=kx,k≠0,k为常数, 则f(x1+x2)=k(x1+x2)=kx1+kx2=f(x1)+f(x2), 故所求的函数可以是 y=kx. |
举一反三
已知f(x)是定义在R上的不恒为零的函数,且对任意a,b∈R满足下列关系式:f(a•b)=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*).考察下列结论:①f(0)=f(1); ②f(x)为偶函数;③数列{an}为等差数列;④数列{bn}为等比数列.其中正确的结论有( ) |
函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,下列命题: ①函数f(x)=x2(x∈R)是单函数; ②函数f(x)=2x(x∈R)是单函数, ③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2); ④在定义域上具有单调性的函数一定是单函数 其中的真命题是______(写出所有真命题的编号) |
已知函数f(x)=,则f(2009)=______. |
已知定义域为R的函数f (x)对任意实数x,y满足f(x+y)+f(x-y)=2f (x)cosy,且f(0)=0,f()=1.给出下列结论: ①f()= ②f(x)为奇函数 ③f(x)为周期函数 ④f(x)在(0,π)内为单调函数 其中正确的结论是______.( 填上所有正确结论的序号). |
已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=ax-g(x)(a>0,且a≠1);②g(x)≠0;③f(x)•g′(x)>f′(x)•g(x).若+=,则a等于( ) |
最新试题
热门考点