(1)由题意得g(x)=f′(x)-2x-3=x2+2mx+n-2x-3=(x+m-1)2+(n-3)-(m-1)2, 又g(x) 在x=-2处取得最小值-5, 所以+(n-3)-(m-1)2=-5,解得m=3,n=2. 所以f(x)=x3+3x2+2x. (2)因为f′(x)=x2+2mx+n且f(x)的单调递减区间的长度是正整数, 所以方程f′(x)=0,即x2+2mx+n=0必有两不等实根, 则△=4m2-4n>0,即m2>n. 不妨设方程f′(x)=0的两根分别为x1、x2,则|x1-x2|==2且为正整数. 又因为m+n<10(m,n∈N+),所以m≥2时才能有满足条件的m、n. 当m=2时,只有n=3符合要求; 当m=3时,只有n=5符合要求; 当m≥4时,没有符合要求的n. 故只有m=2,n=3或m=3,n=5满足上述要求. |