已知函数f(x)=x3+ax2+bx+c(实数a,b,c为常数)的图象过原点,且在x=1处的切线为直线y=-12.(1)求函数f(x)的解析式;(2)若常数m>

已知函数f(x)=x3+ax2+bx+c(实数a,b,c为常数)的图象过原点,且在x=1处的切线为直线y=-12.(1)求函数f(x)的解析式;(2)若常数m>

题型:解答题难度:一般来源:深圳一模
已知函数f(x)=x3+ax2+bx+c(实数a,b,c为常数)的图象过原点,且在x=1处的切线为直线y=-
1
2

(1)求函数f(x)的解析式;
(2)若常数m>0,求函数f(x)在区间[-m,m]上的最大值.
答案
(1)∵函数f(x)=x3+ax2+bx+c(a,b,c∈R)的图象过原点,
∴f(0)=c=0,
求导函数可得:f′(x)=3x2+2ax+b,
∵在x=1处的切线为直线y=-
1
2

∴f(1)=1+a+b=-
1
2
,f′(1)=3+2a+b=0,
∴a=-
3
2
,b=0,
∴f(x)=x3-
3
2
x2
(2)f(x)=x3-
3
2
x2,f′(x)=3x2-3x=3x(x-1),
令f′(x)>0,可得x<0或x>1;令f′(x)<0,可得0<x<1;
∴函数在(-∞,0),(1,+∞)上单调递增;在(0,1)上单调递减,
∴函数在x=0处取得极大值0,
令f(x)=x3-
3
2
x2=0,可得x=0或x=
3
2

∴0<m<
3
2
时,f(m)<0,函数在x=0处取得最大值0;
m≥
3
2
时,f(m)≥0,函数在x=m处取得最大值m3-
3
2
m2
举一反三
已知三次函数f(x)=ax3-5x2+cx+d(a≠0)图象上点(1,8)处的切线经过点(3,0),并且f(x)在x=3处有极值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若当x∈(0,m)时,f(x)>0恒成立,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
f(


x
+1)=x+2


x
,求f(x).
题型:解答题难度:一般| 查看答案
设函数f(x)=


2
2
cos(2x+
π
4
)+sin2
x,x∈R
(1)求f(x)的最小正周期
(2)若函数g(x)对任意x∈R有g(x+
π
2
)=g(x)且x∈[0,
π
2
]时g(x)=f(x),求g(x)在区间[-
π
2
,0]上的解析式.
题型:解答题难度:一般| 查看答案
满足对定义域内任意x1,x2,都有f(x1)f(x2)=f(x1+x2)成立的函数f(x)=______(写出一个即可).
题型:填空题难度:一般| 查看答案
已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=(  )
A.3x+2B.3x-2C.2x+3D.2x-3
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.