已知f(x)=2x-1,(x≥2)-x2+3x,(x<2),则f(-1)+f(3)的值为( )A.-7B.3C.-8D.1
题型:单选题难度:简单来源:不详
已知f(x)=,则f(-1)+f(3)的值为( ) |
答案
因为-1<2,所以f(-1)=-(-1)2+3(-1)=-4; 又3>2,所以f(3)=2×3-1=5; 所以f(-1)+f(3)=-4+5=1. 故选D. |
举一反三
函数f(x)=,若f(1)+f(a)=1,则a的值为______. |
设函数f(x)=,则f(x0)=18,则x0=______. |
已知平面向量=(,-1),=(,) (1)证明:⊥; (2)若存在实数k和t,满足=(t+2)+(t2-t-5),=-k+4,且⊥,试求出k关于t的关系式,即k=f(t); (3)根据(2)的结论,试求出函数k=f(t)在t∈(-2,2)上的最小值. |
设0≤x≤2,则函数y=4x--2x+1+5的最小值是______. |
下列结论正确的是( )A.y=kx(k<0)是增函数 | B.y=x2是R上的增函数 | C.y=是减函数 | D.y=2x2(x=1,2,3,4,5)是增函数 |
|
最新试题
热门考点