已知函数y=f(x)的图象关于y轴对称,且满足f(x-2)=ax2-(a-3)x+(a-2).(Ⅰ)求函数f(x)的解析式;(Ⅱ)g(x)=f[f(x)],F(

已知函数y=f(x)的图象关于y轴对称,且满足f(x-2)=ax2-(a-3)x+(a-2).(Ⅰ)求函数f(x)的解析式;(Ⅱ)g(x)=f[f(x)],F(

题型:解答题难度:一般来源:不详
已知函数y=f(x)的图象关于y轴对称,且满足f(x-2)=ax2-(a-3)x+(a-2).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)g(x)=f[f(x)],F(x)=pg(x)+f(x),问是否存在p(p<0)使F(x)在区间(-∞,-3]上是减函数,且在区间(-3,0)内是增函数?试证明你的结论.
答案
(Ⅰ)令x-2=t,则x=t+2.
由于f(x-2)=ax2-(a-3)x+(a-2),
所以f(t)=a(t+2)2-(a-3)(t+2)+(a-2)
=at2+3(a+1)t+(3a+4)
∴f(x)=ax2+3(a+1)x+(3a+4)
∵y=f(x)的图象关于y轴对称
∴a≠0且3(a+1)=0,即a=-1
故f(x)=-x2+1
(Ⅱ)g(x)=f[f(x)]=-(-x2+1)2+1
=-x4+2x2F(x)=pg(x)+f(x)=-px4+(2p-1)x2+1
设存在p(p<0),使F(x)满足题目要求,
则当-∞<x1<x2≤-3时,
F(x)是减函数,即F(x1)-F(x2
=(x12-x22)[2p-1-p(x12+x22)]>0
由假设-x1>-x2≥3>0,∴x12>x22>9
∴2p-1-p(x12+x22)>0 ①
又p<0,x12+x22>18∴-p(x12+x22)>-18p
∴2p-1-p(x12+x22)>2p-1-18p=-16p-1
要使①式恒成立,只须-16p-1≥0即p≤-
1
16

又当-3<x1<x2<0时,F(x)是增函数,
即F(x1)-F(x2)<0,也就是2p-1-p(x12+x22)<0 ②
此时0<-x2<-x1<3.x12+x22<18-p(x12+x22)<-18p,
2p-1-p(x12+x22)<-16p-1
要使②式恒成立,只须-16p-1≤0即p≥-
1
16

故存在p=-
1
16
满足题目要求.
另依题意F(-3)是F(x)的极小值,∴F′(-3)=0.
∵F"(x)=-4px3+2(2p-1)x,∴-4p(-3)3+2(2p-1)(-3)=0,
p=-
1
16
.当p=-
1
16
时,
F(x)=
1
16
x4-
9
8
x2+1
F′(x)=
1
4
x3-
9
4
x=
1
4
x(x2-9)

∴当x<-3时,F"(x)<0,F(x)在(-∞,-3]上是减函数;
当x∈(-3,0)时,F(x)是增函数.
故存在p=-
1
16
满足题目要求.
举一反三
已知f(x)=loga(kax+1-a),(a>1,k∈R).
(1)当k=1时,求f(x)的定义域;
(2)若f(x)在区间[0,10]上总有意义,求k的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
2x
x+1

(1)当x≥1时,证明:不等式f(x)≤x+lnx恒成立.
(2)若数列{an}满足a1=
2
3
,an+1=f(an),bn=
1
an
-1
,n∈N+,证明数列{bn}是等比数列,并求出数列{bn}、{an}的通项公式;
(3)在(2)的条件下,若cn=an•an+1•bn+1(n∈N+),证明:c1+c2+c3+…cn
1
3
题型:解答题难度:一般| 查看答案
已知一个奇函数的定义域为{-1,2,a,b},则a+b=______.
题型:填空题难度:一般| 查看答案
设f(x)是R上的奇函数,且对∀x∈R都有f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3
(1)求证:直线x=1是函数f(x)的图象的一条对称轴;
(2)当x=[1,5]时,求函数f(x)的解析式.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax4+bx3+cx2+dx+e(其中a、b、c、d、x∈R)为偶函数,它的图象过点A(0,-1),且在x=1处的切线方程为2x+y-2=0.
(1)求函数f(x)的表达式;
(2)若对任意x∈R,不等式f(x)≤t(x2+1)总成立,求实数t的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.