设函数f(x)的定义域为R,若存在常数G>0使|f(x)|≤G100|x|对一切实数x均成立,则称函数f(x)为G函数.现给出下列函数:①f(x)=2x2x2-

设函数f(x)的定义域为R,若存在常数G>0使|f(x)|≤G100|x|对一切实数x均成立,则称函数f(x)为G函数.现给出下列函数:①f(x)=2x2x2-

题型:填空题难度:一般来源:不详
设函数f(x)的定义域为R,若存在常数G>0使|f(x)|≤
G
100
|x|
对一切实数x均成立,则称函数f(x)为G函数.现给出下列函数:
f(x)=
2x2
x2-x+1

②f(x)=x2sinx;
③f(x)=2x(1-3x);
④f(x)是定义在R的奇函数,且对一切x1,x2,恒有|f(x1)+f(x2)|≤100|x1+x2|.
则其中是G函数的序号为______.
答案
①x≠0时,|
f(x)
x
|=|
2x
x2-x+1
|
=|
2
x+
1
x
-1
|≤2=
G
100
,∴G=200,x=0也成立,故①为G函数;
②x≠0时,|
f(x)
x
|=|xsinx|,不存在常数G>0,使得|f(x)|≤
G
100
|x|
成立;
③x≠0时,|
f(x)
x
|=|2(1-3x)|<2,不存在常数G>0,使得|f(x)|≤
G
100
|x|
成立;
④当x2=0,因|f(x1)+f(x2)|≤100|x1+x2|得到|f(x)|≤100|x|成立,这样的G存在,故④正确;
故答案为:①④
举一反三
(注:本题第(2)(3)两问只需要解答一问,两问都答只计第(2)问得分)
已知函数f(x)=ax+xln|x+b|是奇函数,且图象在点(e,f(e))处的切线斜率为3(e为自然对数的底数).
(1)求实数a、b的值;
(2)若k∈Z,且k<
f(x)
x-1
对任意x>1恒成立,求k的最大值;
(3)当m>n>1(m,n∈Z)时,证明:(nmmn>(mnnm
题型:解答题难度:一般| 查看答案
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2+6x+21)+f(y2-8y)<0恒成立,则


x2+y2
的取值范围是______.
题型:填空题难度:简单| 查看答案
已知函数f(x)=lnx-ax2-bx(a,b∈R),g(x)=
2x-2
x+1
-lnx
(I)当a=-1时,f(x)与g(x)在定义域上的单调性相反,求b的取值范围;
(II)设x1,x2是函数y=f(x)的两个零点,且x1<x2求证
2
x1+x2
<a(x1+x2)+b.
题型:解答题难度:一般| 查看答案
设函数f(x)的定义域为R,若存在与x无关的正常数M,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为有界泛函.在函数
①f(x)=-5x,
②f(x)=x2
③f(x)=sin2x,
④f(x)=(
1
2
)x

⑤f(x)=xcosx
中,属于有界泛函的有______(填上所有正确的序号).
题型:填空题难度:一般| 查看答案
定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若实数s满足不等式f(s2-2s)+f(2-s)≤0,则s的取值范围是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.