(Ⅰ)f(x)=•=asin2x+bsinxcosx=(1-cos2x)+sin2x 由f()=2得,a+b=8① ∵f"(x)=asin2x+bcos2x,又∵f"(x)的图象关于直线x=对称,∴f′(0)=f′(), ∴b=a+b,即b=a② 由①、②得,a=2,b=2 (Ⅱ)由(Ⅰ)得f(x)=1-cos2x+sin2x=2sin(2x-)+1 ∵x∈[0,],-≤2x-≤, ∴-1≤2sin(2x-)≤2,f(x)∈[0,3]. 又∵f(x)+log2k=0有解,即f(x)=-log2k有解, ∴-3≤log2k≤0,解得≤k≤1,即k∈[,1]. |