已知函数f(x)是定义在R上的单调函数满足f(-3)=2,,且对任意的实数a∈R有f(-a)+f(a)=0恒成立.(Ⅰ)试判断f(x)在R上的单调性,并说明理由

已知函数f(x)是定义在R上的单调函数满足f(-3)=2,,且对任意的实数a∈R有f(-a)+f(a)=0恒成立.(Ⅰ)试判断f(x)在R上的单调性,并说明理由

题型:解答题难度:一般来源:不详
已知函数f(x)是定义在R上的单调函数满足f(-3)=2,,且对任意的实数a∈R有f(-a)+f(a)=0恒成立.
(Ⅰ)试判断f(x)在R上的单调性,并说明理由;
(Ⅱ)解关于x的不等式f(
答案
举一反三
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

2-x
x
已知函数f(x)=mx-
m
x
,g(x)=2lnx

(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当m=1时,判断方程f(x)=g(x)在区间(1,+∞)上有无实根.
(Ⅲ)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.
若函数f(x)是奇函数,当x>0时,f(x)=x-sinx,求当x<0时,f(x)的解析式.
函数f(x)满足f(x+2)=-
1
f(x)
,求证:f(x)是周期函数,并求出它的一个周期.
已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.
(1)当a=-2时,求函数f(x)的解析式;
(2)若函数f(x)为单调递减函数;
①直接写出a的范围(不必证明);
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.
已知定义在R上的偶函数f(x)满足f(x+2)•f(x)=1对于x∈R恒成立,且f(x)>0,则f(2011)=______.