f(x)是定义在R上的奇函数,则f(0)=( );若有f(-2)=3,则f(2)= ( );若f(5)=7,则f(-5)=( )。
题型:填空题难度:简单来源:广东省同步题
f(x)是定义在R上的奇函数,则f(0)=( );若有f(-2)=3,则f(2)= ( );若f(5)=7,则f(-5)=( )。 |
答案
0;-3;-7 |
举一反三
已知函数(x∈R),若f(x)为奇函数,则a=( )。 |
若f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x<0时,f(x)=x(1-x),求当x>0时,函数f(x)的解析式。 |
设f(x)是定义在R上的奇函数,且当x>0时,f(x)=-2x2+3x+1,试求函数f(x)的解析式。 |
已知定义域为R的偶函数f(x)在(0,+∞)上为减函数,且有f(2)=0,则满足f(x)<0的x的集合为( )。 |
已知函数y=f(x)为R上的奇函数,若f(3)-f(2)=1,则f(-2)-f(-3)=( )。 |
最新试题
热门考点