已知函数f(x)=2x-1,(x≤0)f(x-1)+1,(x>0),把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为Sn

已知函数f(x)=2x-1,(x≤0)f(x-1)+1,(x>0),把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为Sn

题型:单选题难度:简单来源:开封一模
已知函数f(x)=





2x-1,(x≤0)
f(x-1)+1,(x>0)
,把函数g(x)=f(x)-x
的零点按从小到大的顺序排列成一个数列,则该数列的前n项的和为Sn,则S10=(  )
A.
210 
-1
B.29-1C.45D.55
答案
当0<x≤1时,有-1<x-1<0,则f(x)=f(x-1)+1=2x-1
当1<x≤2时,有0<x-1≤1,则f(x)=f(x-1)+1=2x-2+1,
当2<x≤3时,有1<x-1≤2,则f(x)=f(x-1)+1=2x-3+2,
当3<x≤4时,有2<x-1≤3,则f(x)=f(x-1)+1=2x-4+3,
以此类推,当n<x≤n+1(其中n∈N)时,则f(x)=f(x-1)+1=2x-n-1+n,
所以,函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(1,2),
由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.
然后:
①将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x-1和y=x的图象,
取x≤0的部分,可见它们有且仅有一个交点(0,0).
即当x≤0时,方程f(x)-x=0有且仅有一个根x=0.
②取①中函数f(x)=2x-1和y=x图象-1<x≤0的部分,再同时向上和向右各平移一个单位,
即得f(x)=2x-1和y=x在0<x≤1上的图象,此时它们仍然只有一个交点(1,1).
即当0<x≤1时,方程f(x)-x=0有且仅有一个根x=1.
③取②中函数f(x)=2x-1和y=x在0<x≤1上的图象,继续按照上述步骤进行,
即得到f(x)=2x-2+1和y=x在1<x≤2上的图象,此时它们仍然只有一个交点(2,2).
即当1<x≤2时,方程f(x)-x=0有且仅有一个根x=2.
④以此类推,函数y=f(x)与y=x在(2,3],(3,4],…,(n,n+1]上的交点依次为(3,3),(4,4),…
(n+1,n+1).
即方程f(x)-x=0在(2,3],(3,4],…(n,n+1]上的根依次为3,4,…,n+1.
综上所述方程f(x)-x=0的根按从小到大的顺序排列所得数列为:
0,1,2,3,4,…,
其通项公式为:an=n-1,前n项的和为 Sn=
(n-1)•n
2

∴S10=45,
故选C.
举一反三
已知函数 f(x)=ax+x-b的零点xb∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是(  )
A.-2B.-1C.0D.1
题型:单选题难度:一般| 查看答案
已知定义在(0,
π
2
)
上的函数y=2(sinx+1)与y=
8
3
的图象的交点为P,过P作PP1⊥x轴于P1,直线PP1与y=tanx的图象交于点P2,则线段P1P2的长为______.
题型:填空题难度:简单| 查看答案
以下区间中,一定存在函数f(x)=-x3+3x+5的零点的是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]
题型:单选题难度:简单| 查看答案
已知函数f(x)=kx,g(x)=
t
x2
-1
,k为非零实数.
(Ⅰ)设t=k2,若函数f(x),g(x)在区间(0,+∞)上单调性相同,求k的取值范围;
(Ⅱ)是否存在正实数k,都能找到t∈[1,2],使得关于x的方程f(x)=g(x)在[1,5]上有且仅有一个实数根,且在[-5,-1]上至多有一个实数根.若存在,请求出所有k的值的集合;若不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(I)求函数y=f(x)的解析式;
(II)函数g(x)=f(x)+m-ln4,若方程g(x)=0在[
1
e
,2]
上恰有两解,求实数m的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.