求下列各式中的x的值:(1)ln(x-1)<1     (2)(13)1-x -2<0    (3)a2x-1>(1a)x-2,其中a>0且a≠1.

求下列各式中的x的值:(1)ln(x-1)<1     (2)(13)1-x -2<0    (3)a2x-1>(1a)x-2,其中a>0且a≠1.

题型:解答题难度:一般来源:不详
求下列各式中的x的值:
(1)ln(x-1)<1     (2)(
1
3
)
1-x
 -2<0
    (3)a2x-1(
1
a
)
x-2
,其中a>0且a≠1.
答案
(1)∵函数y=lnx 在其定义域内是单调增函数,故由不等式 ln(x-1)<1=lne,可得





x-1>0
x-1<e
,所以 1<x<e+1.
(2)∵不等式 (
1
3
)
1-x
 -2<0
,即 (
1
3
)
1-x
<2
,即 3x-1<2=3log32
再由函数y=3x 在R上是增函数可得,x-1<log32,x<1+log32.
(3)a2x-1(
1
a
)
x-2
 即 a2x-1>(a)2-x
当0<a<1时,由于y=ax 在其定义域内是减函数,故由 a2x-1>(a)2-x 可得 2x-1<2-x,即x<1.
当a>1时,由于y=ax 在其定义域内是增函数,故由 a2x-1>(a)2-x 可得 2x-1>2-x,即x>1.
举一反三
(1)设f(x)=2x,g(x)=4x,若g[g(x)]>g[f(x)]>f[g(x)],求x的最大取值范围.
(2)若函数y=4x-3•2x+3的值域为[1,7],求x的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
ax-1
ax+1

(1)判断函数的奇偶性;
(2)当x≥0时,求函数f(x)的值域;
(3)当a>1时,判断并证明函数f(x)的单调性.
题型:解答题难度:一般| 查看答案
某企业为适应市场需求,准备投入资金20万生产W和R型两种产品.经市场预测,生产W型产品所获利润yw(万元)与投入资金xw(万元)成正比例关系,又估计当投入资金6万元时,可获利润1.2万元.生产R型产品所获利润yR(万元)与投入资金xR(万元)的关系满足yR=
5
4


xR
,为获得最大利润,问生产W,R型两种产品各应投入资金多少万元?获得的最大利润是多少?(精确到0.01万元)
题型:解答题难度:一般| 查看答案
某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
题型:解答题难度:一般| 查看答案
医学上为研究某种传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可***死其体内该病毒细胞的98%.
(Ⅰ) 为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(Ⅱ)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
(参考数据:lg2=0.3010,lg3=0.4771)
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

天数x病毒细胞总数y
11
22
34
48
516
632
764