(本小题满分13分) 定义F(x,y)=(1+x)y,其中x,y∈(0,+∞). (1)令函数f(x)=F(1,log2(x3+ax2+bx+1)),其图象为曲线C,若存在实数b使得曲线C在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围; (2)令函数g(x)=F(1,log2[(lnx-1)ex+x]),是否存在实数x0∈[1,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由. (3)当x,y∈N,且x<y时,求证:F(x,y)>F(y,x). |