(本题满分15分)已知分别以为公差的等差数列,,满足.(Ⅰ)若,且存在正整数,使得,求的最小值;(Ⅱ)若,且数列,的前项和满足,求 的通项公式.

(本题满分15分)已知分别以为公差的等差数列,,满足.(Ⅰ)若,且存在正整数,使得,求的最小值;(Ⅱ)若,且数列,的前项和满足,求 的通项公式.

题型:不详难度:来源:
(本题满分15分)已知分别以为公差的等差数列,,满足.(Ⅰ)若,且存在正整数,使得,求的最小值;(Ⅱ)若且数列,的前项满足,求 的通项公式.
答案
(Ⅰ)80  (Ⅱ)
解析
(Ⅰ)证明:,
,即,   ……4分
. 等号当且仅当时成立,
时, .                 ……7分
(Ⅱ)

=           ……10分
=

…13分
故得,.
因此的通项公式为.          ……15分
举一反三
(本题满分10分)已知数列的前项和为,通项公式为.(Ⅰ)计算的值;(Ⅱ)比较与1的大小,并用数学归纳法证明你的结论.
题型:不详难度:| 查看答案
(本题满分10分)已知集合.(Ⅰ)求;(Ⅱ)若,以为首项,为公比的等比数列前项和记为,对于任意的,均有,求的取值范围.
题型:不详难度:| 查看答案
已知等比数列满足,且,则当时,           
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4  (Ⅰ)求证:数列{bn}中的每一项都是数列{an}中的项;
(Ⅱ)若a1=2,设,求数列{cn}的前n项的和Tn
(Ⅲ)在(Ⅱ)的条件下,若有的最大值.
题型:不详难度:| 查看答案
((12分)已知函数.
(Ⅰ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an
(Ⅱ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+bn<成立.若存在,求出k的值;若不存在,说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.