(1)当n=1时,T1=2S1-1. 因为T1=S1=a1,所以a1=2a1-1,解得a1=1. (2)当n≥2时,Sn=Tn-Tn-1 =2Sn-n2-[2Sn-1-(n-1)2] =2Sn-2Sn-1-2n+1,所以Sn=2Sn-1+2n-1 ①, 所以Sn+1=2Sn+2n+1 ②, ②-①得an+1=2an+2, 所以an+1+2=2(an+2), 即=2(n≥2), 求得a1+2=3,a2+2=6,则=2. 所以{an+2}是以3为首项,2为公比的等比数列, 所以an+2=3·2n-1, 所以an=3·2n-1-2,n∈N*. |