(Ⅰ)∵tanα=-1, ∴tan2α===1,又α为锐角, ∴2α=, ∴sin(2α+)=1, ∴f(x)=2x+1; (Ⅱ)∵an+1=f(an)=2an+1, ∴an+1+1=2(an+1), ∵a1=1, ∴数列{an+1}是以2为首项,2为公比的等比数列, ∴an+1=2•2n-1=2n, ∴an=2n-1, ∴nan=n•2n-n, 下面先求{n•2n}的前n项和Tn: Tn=1×2+2×22+3×23+…+(n-1)•2n-1+n•2n, 2Tn=1×22+2×23+…+(n-1)•2n+n•2n+1, 两式相减得:-Tn=2+22+23+…+2n-n•2n+1 =-n•2n+1 =2n+1-2-n•2n+1, ∴Tn=2+(n-1)•2n+1, ∴Sn=2+(n-1)•2n+1-. |