(Ⅰ) 当时, , 令,得, 当变化时,的变化如下表: 右表可知,函数的递减区间为,递增区间为,. (Ⅱ), 令,得,, 令,则,所以在上递增, 所以,从而,所以 所以当时,;当时,; 所以 令,则, 令,则 所以在上递减,而 所以存在使得,且当时,, 当时,, 所以在上单调递增,在上单调递减. 因为,, 所以在上恒成立,当且仅当时取得“”. 综上,函数在上的最大值. (1)根据k的取值化简函数的表达式,明确函数的定义域,然后利用求导研究函数的单调区间,中规中矩;(2)借助构造函数的技巧进行求解,如构造达到证明的目的,构造达到证明的目的. 【考点定位】本题考查函数的单调性和函数的最值问题,考查学生的分类讨论思想和构造函数的解题能力. |