如图,已知直线l1:y=与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G 都

如图,已知直线l1:y=与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G 都

题型:山西省中考真题难度:来源:
如图,已知直线l1:y=与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G 都在x轴上,且点G与点B重合。
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若矩形DEFG从原地出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围。
答案
解:(1)由=0,得x=-4,
∴A点的坐标为(-4,0)
由-2x+16=0,得x=8
∴B点的坐标为(8,0)
∴AB=8-(-4)=12
,解得
∴C点的坐标为(5,6),
(2)∵点D在l1上且xD=xB=8,

∴D点的坐标为(8,8),
又∵点E在l2上且yE=yD=8,
∴-2xE+16=8,
∴xE=4,
∴E点的坐标为(4,8),
∴DE=8-4=4,EF=8;(3)①当0≤t<3时,如图(1),矩形DEFG与△ABC重叠部分为五边形CHFGR(当t=0时,为四边形CHFG)
过C作CM⊥AB于M,则Rt△RGB∽Rt△CMB,
,即,∴RG=2t,
∵Rt△AFH∽Rt△AMC,∴,即

∴S=S△ABC-S△BRG-S△AFH=

②当3≤t<8时,如图(2),矩形DEFG与△ABC重叠部分为梯形HFGR,过C作CM⊥AB于M,则Rt△ARG∽Rt△ACM,
,∴,∴
又∵Rt△AHF∽Rt△ACM,
,∴,∴
=

③当8≤t≤12时,如图(3),矩形DEFG与△ABC重叠部分为三角形AGR(当t=12时为一个点),过C作CM⊥AB于M,
则Rt△ARG∽Rt△ACM,
,∴,∴
-8t+48。

举一反三
抛物线y=-x2+bx+c的图象如图所示,则此抛物线的解析式为(    )。

题型:湖北省中考真题难度:| 查看答案
如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D。
(1)直接写出A、B、G三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点 F,设点P的横坐标为m。
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式。
题型:江西省中考真题难度:| 查看答案
如图,已知正比例函数和反比例函数的图象都经过点A(3,3)。
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴y,轴分别交于点C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由。
题型:四川省中考真题难度:| 查看答案
正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直。
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN,求此时x的值。
题型:广东省中考真题难度:| 查看答案
如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4)。
(1)求a的值和该抛物线顶点P的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式。
题型:浙江省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.