如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4)。(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线

如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4)。(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线

题型:浙江省中考真题难度:来源:
如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4)。
(1)求a的值和该抛物线顶点P的坐标;
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式。
答案
解:(1)把点C(5,4)代入抛物线y=ax2-5ax+4a,
得25a-25a+4a=4,
解得a=1,
∴该二次函数的解析式为y= x2-5x+4,

∴顶点坐标为
(2)先向左平移3个单位,再向上平移4个单位,得到的二次函数解析式为
即y=x2+x+2。答案不唯一,合理即正确)
举一反三
如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)。
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO
题型:陕西省中考真题难度:| 查看答案
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点。
(1)求此抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似? 若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标。
题型:山东省中考真题难度:| 查看答案
如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
题型:广东省中考真题难度:| 查看答案
已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点在y 轴正半轴上(如图(1))。
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式;
(2)如图(2),点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。
①当△BDE是等腰三角形时,直接写出此时点E的坐标;
②又连接CD、CP(如图(3)),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由。
题型:广东省中考真题难度:| 查看答案
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65 元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为 2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
题型:湖北省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.