已知函数f(x)=(x+2)ex,则f′(0)=______.
题型:不详难度:来源:
已知函数f(x)=(x+2)ex,则f′(0)=______. |
答案
f′(x)=((x+2)?ex)′=ex+(x+2)ex, ∴f′(0)=1+2=3. 故答案为:3. |
举一反三
已知m<0,f(x)=mx3+,且f′(1)≥-18,则实数m等于( ) |
已知f(x)=cosx,则f(π)+f′()=( ) |
已知函数y=f(x)是定义在实数集R上的奇函数,且当x>0,f(x)+xf′(x)>0(其中f′(x)是f(x)的导函数),a={log4}flog4,b=f()设c=(lg),则a,b,c的大小关系是( )A.c>a>b | B.c>b>a | C.a>b>c | D.a>c>b |
|
设函数f(x)=sinx,则f"(x)等于( )A.sinx | B.-sinx | C.cosx | D.-cosx |
|
最新试题
热门考点