已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.依次在x=a,x=b,x=c(a<b<c)处取得极值.(Ⅰ)求t的取值范围;(Ⅱ)若a,b,c成等差数

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.依次在x=a,x=b,x=c(a<b<c)处取得极值.(Ⅰ)求t的取值范围;(Ⅱ)若a,b,c成等差数

题型:西山区模拟难度:来源:
已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.依次在x=a,x=b,x=c(a<b<c)处取得极值.
(Ⅰ)求t的取值范围;
(Ⅱ)若a,b,c成等差数列,求t的值.
答案
(Ⅰ)f"(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex
∵f(x)有三个极值点
∴x3-3x2-9x+t+3=0有三个根a、b、c.
令g(x)=x3-3x2-9x+t+3,则g"(x)=3x2-6x-9=3(x+1)(x-3)
由g"(x)>0可得x<-1或x>3;由g"(x)<0可得-1<x<3;
∴g(x)在(-∞,-1),(3,+∞)上递增,在(-1,3)上递减
∵g(x)有三个零点
∴g(-1)=t+8>0,g(3)=t-24<0
解得-8<t<24
(Ⅱ)∵a,b,c是方程x3-3x2-9x+t+3=0的三个根.
∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+ac+bc)x-abc





a+b+c=3
ab+ac+bc=-9
t+3=-abc
且a+c=2b
∵a+b+c=3,a+c=2b
∴b=1





a+c=2
a+ac+c=-9






a+c=2
ac=-11






a=1-2


3
c=1+2


3






a=1-2


3
b=1
c=1+2


3

∴t=8.
举一反三
定义在(0,+∞)上的函数f(x)=x2-alnx,g(x)=x-a


x
,且f(x)在x=1处取极值.
(Ⅰ)确定函数g(x)的单调性.
(Ⅱ)证明:当1<x<e2时,恒有x<
2+lnx
2-lnx
成立.
题型:东至县模拟难度:| 查看答案
定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f"(a)>0,f′(b)<0.现给出如下结论:
①∃x0∈[a,b],f(x0)=0;            ②∃x0∈[a,b],f(x0)>f(b);
③∀x0∈[a,b],f(x0)≥f(a);      ④∃x0∈[a,b],f(a)-f(b)>f"(x0)(a-b).
其中结论正确的个数是(  )
A.1B.2C.3D.4
题型:福建模拟难度:| 查看答案
已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(-
1
3
,1),求函数f(x)的解析式;
(2)(理)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.
(文)若f(x)的导函数为f′(x),对任意的x∈(0,+∞),不等式f′(x)≥2(1-m)恒成立,求实数m的取值范围.
题型:绵阳二诊难度:| 查看答案
已知函数f(x)=-
1
2
x2+3x+(
9
2
sinθ)lnx
(1)当sinθ=-
4
9
时,求f(x)的单调区间;
(2)若函数f(x)在其定义域内不是单调函数,求θ的取值范围.
题型:安徽模拟难度:| 查看答案
已知定义在同一个区间(


3
3


6
2
)上的两个函数f(x)=x2-2alnx,g(x)=x3-bx2+x在x=x0处的切线平行于x轴.
(1)求实数a和b的取值范围;
(2)试问:是否存在实数x1,x2,当x1,x0,x2成等比数列时,等式f(x1)+f(x2)=2g(x0)成立?若成立,求出实数a的取值范围;若不存在,请说明理由.
题型:温州二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.