已知函数f(x)=x3-12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是(  )A.-1≤m≤1B.-1<m≤1C.-1<m<1D.-1

已知函数f(x)=x3-12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是(  )A.-1≤m≤1B.-1<m≤1C.-1<m<1D.-1

题型:不详难度:来源:
已知函数f(x)=x3-12x,若f(x)在区间(2m,m+1)上单调递减,则实数m的取值范围是(  )
A.-1≤m≤1B.-1<m≤1C.-1<m<1D.-1≤m<1
答案
∵函数f(x)=x3-12x在(2m,m+1)上单调递减,
∴f"(x)=3x2-12≤0在(2m,m+1)上恒成立.
故 





f(2m)≤0 
f(m+1)≤0 
2m<m+1
亦即





8m3-24m≤0 
(m+1)3-12(m+1)≤0 
2m<m+1
成立.
解得-1≤m<1
故答案为:D.
举一反三
f(x)=a


x
-lnx
(a>0):
(1)若f(x)在[1,+∞)上递增,求a的取值范围;  
(2)求f(x)在[1,4]上的最小值.
题型:不详难度:| 查看答案
已知f(x)=e x+
1
e x

(1)证明函数f(x)在区间[0,+∞)上是增函数
(2)求函数f(x)在R上的最值.
题型:不详难度:| 查看答案
已知函数f(x)=x3+ax2+b的图象在点p(1,0)处(即p为切点)的切线与直线3x+y=0平行.
(1)求常数a、b的值;
(2)求函数f(x)在区间[0,t](t>0)上的最小值和最大值.
题型:不详难度:| 查看答案
已知函数f(x)=x3-3ax,(a>0).
(1)当a=1时,求f(x)的单调区间;
(2)求函数y=f(x)在x∈[0,1]上的最小值.
题型:宝鸡模拟难度:| 查看答案
设函数f(x)=x2-ax+bln(x+1)(a,b∈R,且a≠2).
(1)当b=1且函数f(x)在其定义域上为增函数时,求a的取值范围;
(2)若函数f(x)在x=1处取得极值,试用a表示b;
(3)在(2)的条件下,讨论函数f(x)的单调性.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.