已知x∈R,求证:ex≥x+1.

已知x∈R,求证:ex≥x+1.

题型:不详难度:来源:
已知x∈R,求证:ex≥x+1.
答案
证明:设f(x)=ex-x-1,则f′(x)=ex-1,
∴当x=0时,f′(x)=0,f(x)=0.
当x>0时,f′(x)>0,
∴f(x)在(0,+∞)上是增函数,
∴f(x)>f(0)=0.
当x<0时,f′(x)<0,
∴f(x)在(-∞,0)上是减函数,
∴f(x)>f(0)=0.
∴对x∈R都有f(x)≥0,
∴ex≥x+1.
举一反三
若函数f(x)=x-
p
x
在(1,+∞)上是增函数,则实数p的取值范围是______.
题型:浦东新区一模难度:| 查看答案
设函数f(x)=
a
3
x3+
b-1
2
x2+x+5(a,b∈R,a>0)的定义域为R.当x=x1时取得极大值,当x=x2时取得极小值.
(I)若x1<2<x2<4,求证:函数g(x)=ax2+bx+1在区间(-∞,-1]上是单调减函数;
(II)若|x1|<2,|x1-x2|=4,求实数b的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=(x2-ax)ex(a∈R)
(1)当a=2时,求函数f(x)的单调递减区间.
(2)若函数f(x)在(-1,1)上单调递减,求a的取值范围.
(3)函数f(x)可否为R上的单调函数,若是,求出a的取值范围,若不是,请说明理由.
题型:广州模拟难度:| 查看答案
已知函数f(x)=x2-2x-3,x∈[0,1],g(x)=x3-3a2x-2a,x∈[0,1].
(1)求f(x)的值域M;
(2)若a≥1,求g(x)的值域N;
(3)在(2)的条件下,若对于任意的x∈[0,1],总存在x0∈[0,1]使得f(x1)=g(x0),求a的取值范围.
题型:湖北模拟难度:| 查看答案
已知函数f(x)=4x3-3x2cosθ+
1
32
,其中x∈R,θ为参数,且0≤θ≤
π
2

(Ⅰ)当cosθ=0时,判断函数f(x)是否有极值;
(Ⅱ)要使函数f(x)的极小值大于零,求参数θ的取值范围;
(Ⅲ)若对(II)中所求的取值范围内的任意参数θ,函数f(x)在区间(2a-1,a)内都是增函数,求实数a的取值范围.
题型:天津难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.