设函数f(x)=lnx+ln(2-x)+ax(a>0).(1)当a=1时,求f(x)的单调区间.(2)若f(x)在(0,1]上的最大值为12,求a的值.

设函数f(x)=lnx+ln(2-x)+ax(a>0).(1)当a=1时,求f(x)的单调区间.(2)若f(x)在(0,1]上的最大值为12,求a的值.

题型:江西难度:来源:
设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为
1
2
,求a的值.
答案
对函数求导得:f′(x)=
1
x
-
1
2-x
+a
,定义域为(0,2)
(1)当a=1时,f′(x)=
1
x
-
1
2-x
+1,
当f′(x)>0,即0<x<


2
时,f(x)为增函数;当f′(x)<0,


2
<x<2时,f(x)为减函数.
所以f(x)的单调增区间为(0,


2
),单调减区间为(


2
,2)
(2)函数f(x)=lnx+ln(2-x)+ax(a>0).
f′(x)=
1
x
-
1
2-x
+a
>0,所以函数为单调增函数,(0,1]为单调递增区间.
最大值在右端点取到.fmax=f(1)=a=
1
2

所以a=
1
2
举一反三
已知函数φ(x)=
a
x+1
,a为正常数.
(Ⅰ)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)的单调减区间;
(Ⅱ)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=
1
3
mx3-(2+
m
2
)x2+4x+1

(1)若在点(-1,f(-1))处的切线与直线y=-
1
2
x+8
垂直,求m的值;
(2)当m≠0时,求函数f(x)的单调递增区间.
题型:不详难度:| 查看答案
已知函数f(x)=ax2-2


4+2b-b2
x,g(x)=-


1-(x-a)2
(a,b∈R)
(1)当b=0时,若f(x)在(-∞,2]上单调递减,求a的取值范围;
(2)求满足下列条件的所有整数对(a,b):存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值.
题型:不详难度:| 查看答案
定义域R的奇函数f(x),当x∈(-∞,0)时f(x)+xf"(x)<0恒成立,若a=3f(3),b=f(1),c=-2f(-2),则(  )
A.a>c>bB.c>b>aC.c>a>bD.a>b>c
题型:不详难度:| 查看答案
已知a是实数,函数f(x)=x2(x-a)
(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(2)a>0,求f(x)的单调增区间.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.