解法一:(Ⅰ)依题意得f(x)=(2x-x2)ex,所以f"(x)=(2-x2)ex, 令f′(x)=0,得x=±, 当x∈(-∞,-)时,f′(x)<0,函数f(x)在此区间单调递减; 当x∈(-,)时,f′(x)>0,函数f(x)在此区间上单调递增; 当x∈(,+∞)时,f′(x)<0,函数f(x)在此区间上单调递减; 由上可知,x=-是函数f(x)的极小值点,x=是函数f(x)的极大值点.
(Ⅱ)f"(x)=[-ax2+(2a2-2)x+2a]eax, 由函数f(x)在区间(,2)上单调递减可知:f′(x)≤0对任意x∈(,2)恒成立, 当a=0时,f′(x)=-2x,显然f"(x)≤0对任意x∈(,2)恒成立; 当a>0时,f′(x)≤0等价于ax2-(2a2-2)x-2a≥0, 因为x∈(,2),不等式ax2-(2a2-2)x-2a≥0等价于x-≥ 令g(x)=x-,x∈[,2] 则g"(x)=1+,在[,2]上显然有g′(x)>0恒成立,所以函数g(x)在[,2]单调递增, 所以g(x)在[,2]上的最小值为g()=0 由于f′(x)≤0对任意x∈(,2)恒成立等价于x-≥对任意x∈(,2)恒成立, 需且只需g(x)min≥,即0≥,解得-1≤a≤1,因为a>0,所以0<a≤1. 综合上述,若函数f(x)在区间(,2)上单调递减,则实数a的取值范围为0≤a≤1. 若>0,即a>1时,由于函数h(x)的图象是连续不间断的, 假如h(x)≥0对任意x∈(,2)恒成立,则有h()≥0, 解得-1≤a≤1,与a>1矛盾,所以h(x)≥0不能对任意x∈(,2)恒成立. 综上所述:若函数f(x)在区间(,2)上单调递减,则实数a的取值范围为0≤a≤1. |