已知函数f(x)=lnx﹣ax2+(2﹣a)x.(I)讨论f(x)的单调性;(II)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(III)若函数y=f

已知函数f(x)=lnx﹣ax2+(2﹣a)x.(I)讨论f(x)的单调性;(II)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(III)若函数y=f

题型:月考题难度:来源:
已知函数f(x)=lnx﹣ax2+(2﹣a)x.
(I)讨论f(x)的单调性;
(II)设a>0,证明:当0<x<时,f(+x)>f(﹣x);
(III)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f"( x0)<0.
答案
解:(I)函数f(x)的定义域为(0,+∞),
f"(x)==﹣
①若a>0,则由f"(x)=0,得x=,且当x∈(0,)时,f"(x)>0,
当x∈(,+∞)时,f"(x)<0,所以f(x)在(0,)单调递增,在(,+∞)上单调递减;
②当a≤0时,f(x)>0恒 成立,因此f(x)在(0,+∞)单调递增;
(II)设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,
g"(x)==
当x∈(0,)时,g"(x)>0,而g(0)=0,所以g(x)>0,
故当0<x<时,f(+x)>f(﹣x);
(III)由(I)可得,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,
故a>0,从而f(x)的最大值为f(),且f()>0,
不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<x2
由(II)得,f(﹣x1)=f()>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,
﹣x1<x2,于是x0=
由(I)知,f"( x0)<0.
举一反三
设函数f(x)=a2lnx﹣x2+ax,a≠0;
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若f(1)≥e﹣1,求使f(x)≤e2对x∈[1,e]恒成立的实数a的值.(注:e为自然对数的底数)
题型:月考题难度:| 查看答案
函数y=x﹣ln(x+1)的单调递减区间为(   ).
题型:月考题难度:| 查看答案
已知函数f(x)=ex+ax2-ex,a∈R。
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P。
题型:高考真题难度:| 查看答案
若函数h(x)满足
①h(0)=1,h(1)=0;
②对任意a∈[0,1],有h(h(a))=a;
③在(0,1)上单调递减.则称h(x)为补函数。
已知函数h(x)=(λ>-1,p>0)。
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=(n∈N+)时h(x)的中介元为xn,且Sn=,若对任意的n∈N+,都有Sn,求λ的取值范围;
(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1-x的上方,求P的取值范围。
题型:高考真题难度:| 查看答案
若x∈[0,+∞),则下列不等式恒成立的是[     ]
A.ex≤1+x+x2
B.
C.
D.
题型:高考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.