已知函数f(x)=aln(1+ex)-(a+1)x。(1)已知f(x)满足下面两个条件,求a的取值范围。①在(-∞,1]上存在极值, ②对于任意的θ∈R,c∈R

已知函数f(x)=aln(1+ex)-(a+1)x。(1)已知f(x)满足下面两个条件,求a的取值范围。①在(-∞,1]上存在极值, ②对于任意的θ∈R,c∈R

题型:湖南省月考题难度:来源:
已知函数f(x)=aln(1+ex)-(a+1)x。
(1)已知f(x)满足下面两个条件,求a的取值范围。
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由。
答案
解:(1)f′(x)=a-a-1=
接下来分两步:
㈠、先考虑条件①:
(i)当a+1≥0时,即a≥-1时,可得f"(x)<0在R上恒成立,
故f(x)在区间(-∞,+∞)上为减函数,与题意不符。
(ii)当a+1<0时,即a<-1时,可得f"(x)≤0的解集为{x|x≥ln(-a-1)},
此时f(x)在(ln(-a-1),+∞)上单调递减,
在(-∞,ln(-a-1))上单调递增,
从而x0=ln(-a-1)是f(x)的极大值点,
结合题意得ln(-a-1)<1,a>-1-e,
所以a∈(-1-e,-1);
㈡、下面找出当a∈(-e-1,-1)时,满足条件②的a的取值范围
又∵f′(x)==-1-
设g(x)=-1-
则g"(x)=<0恒成立,
所以f′(x)在(1,+∞)上单调递减,
而f′(1)=-1-,结合f′(x)在(1,+∞)上连续,
当x无限的趋近于+∞时,f′(x)无限的趋近于-1,
可得f′(x)∈(-1,-1-
直线l 的斜率k=,则
∵直线l 不是函数f(x)图象的切线,
∴-1-在(1,+∞)上恒成立,
即-2a-1≤ex在(1,+∞)上恒成立,
由此可得-2a-1≤e,即a≥
综上所述,a的取值范围是[,-1)。
(2)由(1)知,a>0时,f(x)在区间(-∞,+∞)上为减函数,
∵A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
∴不妨设x1<x2<x3,可得f(x1)>f(x2)>f(x3),x2=
下面用反证法说明A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))三点不共线:
若A、B、C三点共线,则有f(x2)=(f(x1)+f(x3))
所以 2=+≥2,得x1=x3与x1<x2<x3矛盾
接下来说明角B是钝角:=(x1-x2,f(x1)-f(x2)),
=(x3-x2,f(x3)-f(x2))
=(x1-x2)(x3-x2)+[f(x1)-f(x2)][f(x3)-f(x2)]
∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0,
<0,
可得∠B∈(,π),即△ABC是中B为钝角
假设△ABC为等腰三角形,只能是 =
即:(x1-x22+[f(x1)-f(x2)]2=(x3-x22+[f(x3)-f(x2)]2
∵x2-x1=x3-x2
∴[f(x1)-f(x2)]2=[f(x3)-f(x2)]2
结合f(x1)>f(x2)>f(x3),
化简得2f(x2)=f(x1)+f(x3),
也就是2aln(1+)-2(a+1)x2=aln(1+)(1+)-(a+1)(x1+x3
将2x2=x1+x3代入即得:2aln(1+)-2(a+1)x2=aln(1+)(1+)-2(a+1)x2
∴2ln(1+)=ln(1+)(1+(1+2=(1+)(1+),
可得+2=++=+
而事实上,若①成立,根据+?2=2
必然得到 =,与x1<x3矛盾
所以△ABC不可能为等腰三角形。
举一反三
已知函数g(x)=ax3+bx2+cx(),g(﹣1)=0,则g(x)的导函数f(x)满足f(0)f(1)0.设x1,x2为方程f(x)=0的两根. (1)求的取值范围;
(2)若当|x1﹣x2|最小时,g(x)的极大值比极小值大,求g(x)的解析式.
题型:安徽省月考题难度:| 查看答案
设x1,x2是函数的两个极值点,且|x1﹣x2|=2.
(Ⅰ)证明:0<a≤1;
(Ⅱ)证明:
题型:甘肃省月考题难度:| 查看答案
设函数x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间与极值;
(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.
题型:广东省月考题难度:| 查看答案
设函数f(x)=ax3+bx2+cx+d(a、b、c、d∈R)满足:x∈R都有f(x)+f(﹣x)=0,且x=1时,f(x)取极小值
(1)f(x)的解析式;
(2)当x∈[﹣1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直:
(3)设F(x)=|xf(x)|,证明:时,
题型:广西自治区月考题难度:| 查看答案
已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ )若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
题型:广西自治区月考题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.