已知P(x,y)为函数y=lnx图象上一点,O为坐标原点,记直线OP的斜率为k=f(x).(Ⅰ)求f(x)的单调区间;     (Ⅱ)求函数F(x)=x﹣f(x

已知P(x,y)为函数y=lnx图象上一点,O为坐标原点,记直线OP的斜率为k=f(x).(Ⅰ)求f(x)的单调区间;     (Ⅱ)求函数F(x)=x﹣f(x

题型:吉林省月考题难度:来源:
已知P(x,y)为函数y=lnx图象上一点,O为坐标原点,记直线OP的斜率为k=f(x).
(Ⅰ)求f(x)的单调区间;    
(Ⅱ)求函数F(x)=x﹣f(x)的最小值.
答案
解:(Ⅰ)k=f(x)=(x>0),
求导函数可得f′(x)=
令f′(x)>0,x>0,可得0<x<e;
令f′(x)<0,可得x>e
∴f(x)在(0,e)单调递增,(e,+∞)单调递减.
(Ⅱ)F(x)=x﹣,求导函数可得F′(x)=
设h(x)=x2﹣1+lnx,求导函数可得
∴h(x)在(0,+∞)为单调递增函数.
∵h(1)=0,∴F"(1)=0,除了1之外,F(x)无其他零点,
∴当x=1时,F(1)=1为最小值.
举一反三
已知函数
(I)若f(x)在处取极值,
①求a、b的值;
②存在,使得不等式f(x0)﹣c≤0成立,求c的最小值;
(II)当b=a时,若f(x)在(0,+∞)上是单调函数,求a的取值范围.
(参考数据e27.389,e320.08)
题型:吉林省期末题难度:| 查看答案
已知函数f(x)=log2(ax2+2x﹣3a).
(Ⅰ)当a=﹣1时,求该函数的定义域和值域;
(Ⅱ)如果f(x)≥1在区间[2,3]上恒成立,求实数a的取值范围.
题型:吉林省期末题难度:| 查看答案
已知函数f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数在区间(t,3)上总存在极值?
(Ⅲ)当a=2时,设函数,若在区间[1,e]上至少存在一个x0,使得h(x0)>f(x0)成立,试求实数p的取值范围.
题型:吉林省期末题难度:| 查看答案
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(I)求a的值
(II)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
题型:江苏同步题难度:| 查看答案
经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:L)与速度v(单位:km/h)的关系近似地满足u=除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.
(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
题型:江苏期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.