已知a∈R,函数f(x)=x2(x-a)。(1)当a=3时,求f(x)的零点; (2)求函数y=f(x)在区间[1,2]上的最小值。

已知a∈R,函数f(x)=x2(x-a)。(1)当a=3时,求f(x)的零点; (2)求函数y=f(x)在区间[1,2]上的最小值。

题型:专项题难度:来源:
已知a∈R,函数f(x)=x2(x-a)。
(1)当a=3时,求f(x)的零点;
(2)求函数y=f(x)在区间[1,2]上的最小值。
答案
解:(1)由题意f(x)=x2(x-3),
由f(x)=0,解得x=0,或x=3。
(2)设此最小值为m

①当a≤0时,f"(x)>0,x∈(1,2),
则f(x)是区间[1,2]上的增函数,
所以m=f(1)=1-a;
②当a>0时,当x<0或时,f"(x)>0,
从而f(x)在区间[)上是增函数;
时,f"(x)<0,
从而,f(x)在区间[0,]上是单减函数
(i)当,即a≥3时,m=f(2)=8-4a;
(ii)当,即时,
(iii)当时,m=f(1)=1-a
综上所述,所求函数的最小值
举一反三
已知点M(1,y)在抛物线C:y2=2px(p>0)上,M点到抛物线C的焦点F的距离为2,直线l:y=-x+b与抛物线C交于A,B两点,
(1)求抛物线C的方程;
(2)若以AB为直径的圆与x轴相切,求该圆的方程;
(3)若直线l与y轴负半轴相交,求△AOB面积的最大值.
题型:北京期末题难度:| 查看答案
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R),
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间;
(3)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围。
题型:北京期末题难度:| 查看答案
常数a≥0,函数f(x)=x-ln2x+2alnx-1。
(1)令g(x)=xf"(x)(x>0),求g(x)的最小值并比较g(x)的最小值与0的大小;
(2)证明:当x>1时,恒有x>ln2x-2alnx+1。
题型:安徽省模拟题难度:| 查看答案
如图,有一矩形钢板ABCD缺损了一角(图中阴影部分),边缘线OM上每一点到D的距离都等于它到边AB的距离,工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1米,AD=0.5米,问如何画切割线EF可使五边形ABCEF的面积最大?
题型:河北省期末题难度:| 查看答案

已知函数f(x)=ax2+lnx(a∈R)。
(1)当时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x)在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的 “活动函数”。已知函数f1(x)=(a-)x2+2ax+(1-a2)lnx,f2(x)=x2+2ax。
①若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围;
②当时,求证:在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个。

题型:浙江省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.