已知Sn={A|A=(a1,a2,a3,…an)},ai={0或1},i=1,2,••,n(n≥2),对于U,V∈Sn,d(U,V)表示U和V中相对应的元素不同

已知Sn={A|A=(a1,a2,a3,…an)},ai={0或1},i=1,2,••,n(n≥2),对于U,V∈Sn,d(U,V)表示U和V中相对应的元素不同

题型:丰台区一模难度:来源:
已知Sn={A|A=(a1,a2,a3,…an)},ai={0或1},i=1,2,••,n(n≥2),对于U,V∈Sn,d(U,V)表示U和V中相对应的元素不同的个数.
(Ⅰ)令U=(0,0,0,0),存在m个V∈S5,使得d(U,V)=2,写出m的值;
(Ⅱ)令w=
0,0,0,…0





n个0
,U,V∈Sn,求证:d(U,W)+d(V,W)≥d(U,V);
(Ⅲ)令U=(a1,a2,a3,…an),若V∈Sn,求所有d(U,V)之和.
答案
(Ⅰ)∵V∈S5,d(U,V)=2,
∴C52=10,即m=10;
(Ⅱ)证明:令U=(a1,a2,a3,…an),V=(b1,b2,b3,…bn
∵ai=0或1,bi=0或1;
当ai=0,bi=0时,|ai|+|bi|=0=|ai-bi|
当ai=0,bi=1时,|ai|+|bi|=1=|ai-bi|
当ai=1,bi=0时,|ai|+|bi|=1=|ai-bi|
当ai=1,bi=1时,|ai|+|bi|=2≥|ai-bi|=0
故,|ai|+|bi|≥|ai-bi|
∴d(U,W)+d(V,W)=(a1+a2+a3+…+an)+(b1+b2+b3+…+bn
=(|a1|+|a2|+|a3|+…+|an|)+(|b1|+|b2|+|b3|+…+|bn|)
≥|a1-b1|+|a2-b2|+|a3-b3|+…+|an-bn|
(Ⅲ)易知Sn中共有2n个元素,分别记为vk(k=1,2,3,…,2n,v=(b1,b2,b3,…bn
∵bi=0的vk共有2n-1个,bi=1的vk共有2n-1个.
∴d(U,V)=2n-1(|a1-0|+|a1-1|+|a2-0|+a2-1|+|a3-0|+|a3-1|+…+|an-0|+|an-1|=n2n-1
∴d(U,V)=n2n-1
举一反三
4个男生,3个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有______.
题型:不详难度:| 查看答案
用数字2,3,5,6,7组成没有重复数字的五位数,使得每个五位数中的相邻的两个数都互质,则得到这样的五位数的概率为(  )
A.
2
5
B.
7
20
C.
3
10
D.
1
4
题型:不详难度:| 查看答案
数9117,9005,9239有某些共同点,即每个数都是首位为9的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有______个.
题型:不详难度:| 查看答案
某校高三理科实验班有5名同学报名参加甲、乙、丙三所高校的自主招生考试,每人限报一所高校.若这三所高校中每个学校都至少有1名同学报考,那么这5名同学不同的报考方法种数共有(  )
A.144种B.150种C.196种D.256种
题型:成都二模难度:| 查看答案
已知从A地到B地有2条公路可走,从B地到C地有3条小路可走,又从A地不过B地到C地有1条水路可走,那么从A地到C地的不同走法一共有______种.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.