(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,

(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,

题型:不详难度:来源:
(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求证:AC⊥BD.
(2)求三棱锥E-BCD的体积.
答案
(1)见解析     (2)
解析
(1)因为EA⊥平面ABC,AC⊂平面ABC,所以EA⊥AC,即ED⊥AC.
又因为AC⊥AB,AB∩ED=A,所以AC⊥平面EBD.
因为BD⊂平面EBD,所以AC⊥BD.
(2)因为点A,B,C在圆O的圆周上,且AB⊥AC,所以BC为圆O的直径.
设圆O的半径为r,圆柱高为h,根据正(主)视图,侧(左)视图的面积可得,
解得
所以BC=4,AB=AC=2.
以下给出求三棱锥E-BCD体积的两种方法:
方法一:由(1)知,AC⊥平面EBD,
所以VE-BCD=VC-EBD=S△EBD×CA,
因为EA⊥平面ABC,AB⊂平面ABC,
所以EA⊥AB,即ED⊥AB.
其中ED=EA+DA=2+2=4,
因为AB⊥AC,AB=AC=2,
所以S△EBD=ED×AB=×4×2=4,
所以VE-BCD=×4×2=.
方法二:因为EA⊥平面ABC,
所以VE-BCD=VE-ABC+VD-ABC=S△ABC×EA+
S△ABC×DA=S△ABC×ED.
其中ED=EA+DA=2+2=4,
因为AB⊥AC,AB=AC=2,
所以S△ABC=×AC×AB=×2×2=4,
所以VE-BCD=×4×4=.
举一反三
已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).
(1)证明:平面PAD⊥平面PCD.
(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA∶VMACB=2∶1.
(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.

题型:不详难度:| 查看答案
(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,,BC=CD=2,
(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.

题型:不详难度:| 查看答案
如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,
.
(1)求证:
(2)若,求三棱锥的体积.

题型:不详难度:| 查看答案
若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为       .
题型:不详难度:| 查看答案
一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为          .

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.