如图,在六面体ABCDEFG中,平面ABC∥平面DEFC,AD⊥平面DEFC,AB⊥AC,ED⊥DG,EF∥DC,且AB=AD=DE=DG=2,AC=EF=l,

如图,在六面体ABCDEFG中,平面ABC∥平面DEFC,AD⊥平面DEFC,AB⊥AC,ED⊥DG,EF∥DC,且AB=AD=DE=DG=2,AC=EF=l,

题型:天津模拟题难度:来源:
如图,在六面体ABCDEFG中,平面ABC∥平面DEFC,AD⊥平面DEFC,AB⊥AC,ED⊥DG,EF∥DC,且AB=AD=DE=DG=2,AC=EF=l,
(Ⅰ)求证:BF∥平面ACGD:
(Ⅱ)求二面角D-CC-F的余弦值;
(Ⅲ)求六面体ABCDEFG的体积。
答案
解:由已知,AD,DE,DG两两垂直,建立如图的坐标系,


(Ⅰ)


所以,
平面ACGD,故平面ACGD。
(Ⅱ)
设平面BCGF的法向量为

令y=2,则
而平面ADCG的法向量

故二面角D-CG-F的余弦值为
 (Ⅲ)设DG的中点为M,连结AM,FM,


举一反三
如图,将正方形ABCD沿对角线BD折成直二面角,连接A′C得到三棱锥A′-BCD,A′F垂直BD于F,E为BC的中点,
(Ⅰ)求证:EF∥平面A′CD;
(Ⅱ)求直线A′E与平面BCD所成角的余弦值;
(Ⅲ)二面角B-A′C-D的余弦值.
题型:陕西省模拟题难度:| 查看答案
如图甲,直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD中点,E在BC上,且EF∥AB,已知AB=AD=CE=2,现沿EF把四边形CDFE折起如图乙,使平面CDFE⊥平面ABEF,
(Ⅰ)求证:AD∥平面BCE;
(Ⅱ)求CD与平面ABC所成角的正弦值。
题型:山东省模拟题难度:| 查看答案
如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE,
(Ⅰ)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;
(Ⅱ)在平面EBD与平面ABC所成的锐二面角的余弦值.
题型:广东省模拟题难度:| 查看答案
如图,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD, CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)若BE⊥平面PCD,
①求异面直线PD与BC所成角的余弦值;
②求二面角E-BD-C的余弦值。
题型:浙江省模拟题难度:| 查看答案
如图,平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四边形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=AE=2,O,M分别为CE,AB的中点.
(Ⅰ)求证:OD∥平面ABC;
(Ⅱ)求直线CD和平面ODM所成角的正弦值;
(Ⅲ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由。
题型:福建省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.