如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M为棱CC1上一点.(1)若C1M=32,求异面直线A1M和C1D1所成角的正切

如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M为棱CC1上一点.(1)若C1M=32,求异面直线A1M和C1D1所成角的正切

题型:不详难度:来源:
如图所示,在长方体ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M为棱CC1上一点.
(1)若C1M=
3
2
,求异面直线A1M和C1D1所成角的正切值;
(2)是否存在这样的点M使得BM⊥平面A1B1M?若存在,求出C1M的长;若不存在,请说明理由.
答案
(1)过点M作MNC1D,交D1D于N,连接A1N,
则∠A1MN或其补角就是异面直线A1M和C1D1所成角
在Rt△A1NM中,AB=1,A1N=


22+(
3
2
)2
=
5
2

∴tan∠A1MN=
A1N
MN
=
5
2

由此可得,当C1M=
3
2
时,异面直线A1M和C1D1所成角的正切值为
5
2

(2)∵A1B1⊥平面BB1C1C,BM⊆平面BB1C1C,
∴A1B1⊥BM,
因此可得:只要B1M⊥BM,就有BM⊥平面A1B1M.
假设存在M点,使得BM⊥平面A1B1M,设C1M=x
则矩形BB1C1C中,B1M⊥BM,所以∠MB1C1=∠MBB1
∴Rt△B1MBRt△MB1C1,所以
C1M
B1M
=
B1M
B1B

∴B1M2=B1B•C1M,可得4+x2=5x,解之得x=1或4
∴当C1M的长为1或4时,存在点M使得BM⊥平面A1B1M.
举一反三
(理)如图,四棱锥P-ABCD的底面是矩形,PA⊥面ABCD,PA=2


19
,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.
(1)求EF的长;
(2)证明:EF⊥PC.
题型:不详难度:| 查看答案
在长方体ABCD-A1B1C1D1中,E,F分别是AD,DD1的中点,AB=BC=2,A1A=2


2

(Ⅰ)求证:EF平面A1BC1
(Ⅱ)在线段BC1是否存在点P,使直线A1P与C1D垂直,如果存在,求线段A1P的长,如果不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知四棱锥P-ABCD底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为


6
2
,求此时异面直线AE和CH所成的角.
题型:不详难度:| 查看答案
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置都有BD⊥AE,证明你的结论.
题型:不详难度:| 查看答案
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.