如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.(1)求证:DB⊥平面B1BCC1;(2)设E是DC

如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.(1)求证:DB⊥平面B1BCC1;(2)设E是DC

题型:不详难度:来源:
如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.
答案
(1)证明:∵ABDC,AD⊥DC,
∴AB⊥AD,在Rt△ABD中,AB=AD=1,
∴BD=


2

易求BC=


2

又∵CD=2,∴BD⊥BC.
又BD⊥BB1,B1B∩BC=B,

∴BD⊥平面B1BCC1
(2)DC的中点即为E点.
∵DEAB,DE=AB,
∴四边形ABED是平行四边形.
∴ADBE.
又ADA1D1,∴BEA1D1
∴四边形A1D1EB是平行四边形.∴D1EA1B.
∵D1E⊄平面A1BD,
∴D1E平面A1BD.
举一反三
如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,ABCD,AB=AD=1,CD=2,DE=4,M为CE的中点.
(Ⅰ)求证:BM平面ADEF:
(Ⅱ)求证:BC⊥平面BDE;
(Ⅲ)求三棱锥C-MBD的体积.
题型:不详难度:| 查看答案
如图在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足为点A,PA=AB=2,点M,N分别是PD,PB的中点.
(I)求证:PB平面ACM;
(II)求证:MN⊥平面PAC;
(III)求四面体A-MBC的体积.
题型:不详难度:| 查看答案
如图,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E为PC的中点.求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.
题型:不详难度:| 查看答案
如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.