(1)证明:∵AD⊥平面ABE,AD∥BC,
∴BC⊥平面ABE,
∵AE?平面ABE,
∴AE⊥BC.
又∵BF⊥平面ACE,AE?平面ACE
∴BF⊥AE,
∵BC∩BF=B,
∴AE⊥平面BCE
(2)证明:连接 GF,
∵BF⊥平面ACE,
∴BF⊥CE ∵BE=BC,
∴F为EC的中点,
∵G是AC的中点,
∴FG∥AE
∵FG?平面BFD,AE平面BFD
∴AE∥平面BFD;
(3)解:取AB中点O,连接OE.
因为AE=EB,
所以OE⊥AB.
因为AD⊥面ABE,OE?面ABE,
所以OE⊥AD,所以OE⊥面ADC
因为BF⊥面ACE,AE?面ACE,
所以BF⊥AE.
因为CB⊥面ABE,AE?面ABE,
所以AE⊥BC.又BF∩BC=B,
所以AE⊥平面BCE,
又BE?面BCE,
所以AE⊥EB.
∵AE=EB=2,
∴AB=2 ,∴OE=
∴F到平面BCD的距离为
∴四面体BCDF的体积 × ×2×2 × =
© 2017-2019 超级试练试题库,All Rights Reserved.