如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.(1)试判断直线AB与平面DEF的

如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.(1)试判断直线AB与平面DEF的

题型:不详难度:来源:
如图,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求棱锥E-DFC的体积;
(3)在线段BC上是否存在一点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.
答案
(1)平面;(2);(3).
解析

试题分析:本题主要考查线面垂直、线面平行、线线垂直、线线平行以及锥体体积问题,考查空间想象能力、运算能力和推理论证能力.第一问,在中,利用中位线得到平行,通过线面平行的判断定理即可得到平面;第二问,要求三棱锥的体积,找到底面积和高是关键,通过的翻折得出平面,通过,得出平面,所以为锥体的高,利用锥体体积公式计算出体积;第三问,在线段上取点.使, 过,在中,利用边长求出的正切,从而确定角的度数,在等边三角形中,是角平分线,所以,再利用线面垂直的判定证出平面,所以.
试题解析:(1)平面,理由如下:
如图:在中,由分别是中点,得
平面平面.∴平面

(2)∵,将沿翻折成直二面角
   ∴平面
的中点,这时  ∴平面
 
(3)在线段上存在点,使
证明如下:在线段上取点.使, 过
平面    ∴平面
,  ∴
  在等边中, ∴
平面    ∴
平面, ∴. 
此时,   ∴
举一反三
如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。

(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.
题型:不详难度:| 查看答案
如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,,DC=1,AB=2,PA⊥平面ABCD,PA=1.

(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
题型:不详难度:| 查看答案
已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求三棱锥C1-BCA1的体积.
题型:不详难度:| 查看答案
四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求面与面所成二面角大小.
题型:不详难度:| 查看答案
已知在棱长为2的正方体中,的中点.
(1)求证:
(2)求三棱锥的体积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.