(本小题满分14分)如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3

(本小题满分14分)如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3

题型:不详难度:来源:
(本小题满分14分)
如图,四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求证:平面SBC⊥平面SAB;
(2)若E、F分别为线段BC、SB上的一点(端点除外),满足.(
①求证:对于任意的,恒有SC∥平面AEF;
②是否存在,使得△AEF为直角三角形,若存在,求出所有符合条件的值;若不存在,说明理由.
答案
(1)∵平面平面∴平面平面(2)①SC∥平面AEF②
解析

试题分析:(Ⅰ)∵平面
     ……………1分
∵底面为直角梯形,
    ……………2分

平面     …………3分
平面
∴平面平面 …………4分
(Ⅱ)(ⅰ)∵,∴………5分
平面,  平面,………6分
∴对于任意的,恒有SC∥平面AEF………7分
(ⅱ)存在,使得为直角三角形. ………8分
,即
由(Ⅰ)知,平面,∵平面,∴



中,

.    ………10分
②若,即由①知,
平面,∴平面
又因平面,这与过一点有且只有一条直线与已知平面垂直相矛盾,
.  ………12分
③若,即由(ⅰ)知,,∴
又∵平面平面
 ,平面
这与相矛盾,故
综上,当且仅当,使得为直角三角形. ……… 14分
点评:第二小题②采用空间向量求解比较简单
举一反三
如图,在正方体A1B1C1D1­ABCD中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为
A.B.C.D.

题型:不详难度:| 查看答案
(本小题满分12分)
在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求二面角的余弦值.
题型:不详难度:| 查看答案
(本小题满分15分)如图,在四棱锥中,底面是正方形,侧棱底面的中点,作于点

(1)证明:平面.
(2)证明:平面.
(3)求二面角的大小.
题型:不详难度:| 查看答案
如图,在正方体中,分别是的中点,则异面直线
所成的角的大小是____________.
题型:不详难度:| 查看答案
(本小题满分14分)
如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.

(1)求证:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.