过直线x+y-2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________.

过直线x+y-2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________.

题型:不详难度:来源:
过直线x+y-2=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是__________.
答案
()
解析
本题主要考查数形结合的思想,设P(x,y),则由已知可得PO(O为原点)与切线的夹角为30°,则|PO|=2,由可得
举一反三
已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求证:不论m取什么实数,直线l与圆C恒交于两点;
(2)求直线被圆C截得的弦长最小时直线l的方程.
题型:不详难度:| 查看答案
已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求证:不论m取什么值,圆心在同一直线l上;
(2)与l平行的直线中,哪些与圆相交,相切,相离.
题型:不详难度:| 查看答案
已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,

M是PQ中点,l与直线m:x+3y+6=0相交于N.
(1)求证:当l与m垂直时,l必过圆心C;
(2)当PQ=2时,求直线l的方程;
(3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.
题型:不详难度:| 查看答案
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).
(1)若l1与圆相切,求l1的方程;
(2)若l1与圆相交于P、Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM·AN是否为定值?若是,则求出定值;若不是,请说明理由.
题型:不详难度:| 查看答案
直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果AB=8,求直线l的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.