试题分析:设A(),B(),Q(),又P(1,1), 则,,=(), =(). 由PA⊥PB,得 •=0,即(x1-1)(x2-1)+(y1-1)(y2-1)=0. 整理得:x1x2+y1y2-(x1+x2)-(y1+y2)+2=0, 即x1x2+y1y2=x+1+y+1-2=x+y① 又∵点A、B在圆上,∴x12+y12=x22+y22=4② 再由|AB|=|PQ|,得(x1−y1)2+(x2−y2)2=(x−1)2+(y−1)2, 整理得:x12+y12+x22+y22−2(x1y1+x2y2)=(x−1)2+(y−1)2③ 把①②代入③得:x2+y2=6. ∴矩形APBQ的顶点Q的轨迹方程为:x2+y2=6. 故答案为:x2+y2=6.. |