已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0).(Ⅰ)若l1与圆相切,求l1的方程;(Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,
题型:不详难度:来源:
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0). (Ⅰ)若l1与圆相切,求l1的方程; (Ⅱ)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,求证:AM•AN为定值. |
答案
(Ⅰ)①若直线l1的斜率不存在,即直线x=1,符合题意.(2分) ②若直线l1斜率存在,设直线l1为y=k(x-1),即kx-y-k=0. 由题意知,圆心(3,4)到已知直线l1的距离等于半径2, 即=2解之得k=. 所求直线方程是x=1,3x-4y-3=0.(5分) (Ⅱ)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx-y-k=0 由得N(,-)又直线CM与l1垂直, 得M(,).
∴AM*AN=•=6为定值.(10分) |
举一反三
求以过原点与圆x2+y2-4x+3=0相切的两直线为渐近线且过椭圆4x2+y2=4两焦点的双曲线方程. |
已知直线ax+by+c=0(abc≠0)与圆x2+y2=1相切,则三条边长分别为|a|、|b|、|c|的三角形( )A.是锐角三角形 | B.是直角三角形 | C.是钝角三角形 | D.不存在 | 已知A(-4,0),B(2,0)以AB为直径的圆与y轴的负半轴交于C,求过C点的圆的切线方程. | 从圆x2-2x+y2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为( )A. | B. | C. | D.0 | 由点P(1,3)引圆x2+y2=9的切线的长是( )A.2 | B. | C.1 | D.4 |
最新试题
热门考点
|
|
|