已知直线m经过点P(-3,-32),被圆O:x2+y2=25所截得的弦长为8,(1)求此弦所在的直线方程;(2)求过点P的最短弦和最长弦所在直线的方程.

已知直线m经过点P(-3,-32),被圆O:x2+y2=25所截得的弦长为8,(1)求此弦所在的直线方程;(2)求过点P的最短弦和最长弦所在直线的方程.

题型:不详难度:来源:
已知直线m经过点P(-3,-
3
2
),被圆O:x2+y2=25所截得的弦长为8,
(1)求此弦所在的直线方程;
(2)求过点P的最短弦和最长弦所在直线的方程.
答案
(12 分)
(1)由题意易知:圆心O到直线m到的距离为3.
设m所在的直线方程为:y+
3
2
=k(x+3)
,即2kx-2y+6k-3=0.
由题意易知:圆心O到直线m到的距离为3,
|6k-3|


(2k)2+(-2)2
=3
.解得k=-
3
4

此时直线m为:3x+4y+15=0,
而直线x=-3显然也符合题意.
故直线m为:3x+4y+15=0或x=-3.
(2)过点P的最短弦就是圆心与P连线垂直的直线,k=-
-3-0
-
3
2
-0
=-2,
所以,过点P的最短弦所在直线的方程为:y+
3
2
=-2(x+3)

即:4x+2y+15=0;
最长弦就是直线经过圆心所在直线,k=
-
3
2
-3
=
1
2

所以,过点P的最长弦所在直线的方程为:y+
3
2
=
1
2
(x+3)

即:x-2y=0.
举一反三
经过圆(x+1)2+y2=1的圆心,且与直线x+y=0垂直的直线方程是(   )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
A.x+y-1=0B.x+y+1=0C.x-y-1=0D.x-y+1=0
已知椭圆
x2
a2
+
y2
b2
=1=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+


2
a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值.魔方格
过点P(3,6)且被圆x2+y2=25截得的弦长为8的直线方程为 ______.
直线过点(0,2),且被圆x2+y2=4截得的弦长为2,则此直线的斜率是(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.±
B.±
C.± D.±
在平面直角坐标系xOy中,圆C的方程为x2+y2=4,若直线kx-4y+16=0上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则K的取值范围______.