中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.求这两条曲

中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.求这两条曲

题型:不详难度:来源:
中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2


13
,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7.求这两条曲线的方程.
答案
设椭圆的方程为
x2
a21
+
y
b21
=1
,双曲线得方程为
x2
a22
-
y2
b22
=1
,半焦距c=


13

由已知得:a1-a2=4,
c
a1
c
a2
=3:7

解得:a1=7,a2=3;所以:b12=36,b22=4,
所以两条曲线的方程分别为:
x2
49
+
y2
36
=1
x2
9
-
y2
4
=1
举一反三
已知椭圆的中心在原点,左焦点F1(-2,0),过左焦点且垂直于长轴的弦长为
2


6
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.
题型:不详难度:| 查看答案
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


2
2
,且经过点M(-2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设斜率为1的直线l与椭圆C相交于A(x1,y1),B(x2,y2)两点,连接MA,MB并延长交直线x=4于P,Q两点,设yP,yQ分别为点P,Q的纵坐标,且
1
y1
+
1
y2
=
1
yP
+
1
yQ
.求△ABM的面积.
题型:丰台区一模难度:| 查看答案
已知直线l:y=x+k经过椭圆C:
x2
a2
+
y2
a2-1
=1,(a>1)
的右焦点F2,且与椭圆C交于A、B两点,若以弦AB为直径的圆经过椭圆的左焦点F1,试求椭圆C的方程.
题型:不详难度:| 查看答案
设集合A={2,4,6,8,10},B={1,3,5,7,9},椭圆
x2
a2
+
y2
b2
=1
其中a∈A,b∈B能构成焦点在y轴上椭圆的概率为(  )
A.0.2B.0.4C.0.6D.0.8
题型:不详难度:| 查看答案
设椭圆的两焦点分别为(0,-2),(0,2),两准线间的距离为13,则椭圆的方程为______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.