在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(  )A.B.C.D.

在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(  )A.B.C.D.

题型:山东难度:来源:
在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(  )
答案
举一反三
A.
B.
C.
D.
设椭圆的标准方程为,其焦点在x轴上,则k的取值范围是(   )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

A.4<k<5B.3<k<5C.k>3D.3<k<4
已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-


5
,0),F2(


5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,的离心率为e=


3
2
,A、B分别为椭圆的长轴和短轴的端点,M为AB的中点,O为坐标原点,且|


OM
|=


5
2

(I)求椭圆的方程;
(II)过(-1,0)的直线l与椭圆交于P、Q两点,求△POQ的面积的最大时直线l的方程.
在平面直角坐标系xOy中,已知两点F1(-6,0)、F2(6,0),点P位于第一象限,且tan∠PF1F2=
2
11
,tan∠PF2F1=2.
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)求以F1、F2为焦点且过点P的双曲线的标准方程.
已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,点P(-


2
,1)在椭圆上,线段PF2与y轴的交点M满足


PM
+


F2M
=


0

(1)求椭圆C的方程.
(2)椭圆C上任一动点M(x0,y0)关于直线y=2x的对称点为M1(x1,y1),求3x1-4y1的取值范围.