在直角坐标系xOy中,长为的线段的两端点C、D分别在x轴、y轴上滑动,.记点P的轨迹为曲线E.(I)求曲线E的方程;(II)经过点(0,1)作直线l与曲线E相交

在直角坐标系xOy中,长为的线段的两端点C、D分别在x轴、y轴上滑动,.记点P的轨迹为曲线E.(I)求曲线E的方程;(II)经过点(0,1)作直线l与曲线E相交

题型:河北省模拟题难度:来源:
在直角坐标系xOy中,长为的线段的两端点C、D分别在x轴、y轴上滑动,.记点P的轨迹为曲线E.
(I)求曲线E的方程;
(II)经过点(0,1)作直线l与曲线E相交于A、B两点,,当点M在曲线E上时,求四边形OAMB的面积.
答案

解:(Ⅰ)设C(m,0),D(0,n),P(x,y).
=,得(x-m,y)=(-x,n-y),

由||=+1,得m2+n2=(+1)2


∴(+1)2x2+y2=(+1)2
整理,得曲线E的方程为x2+=1.
(Ⅱ)设A(x1,y1),B(x2,y2),
=+,知点M坐标为(x1+x2,y1+y2).
设直线l的方程为y=kx+1,代入曲线E方程,
得(k2+2)x2+2kx﹣1=0,
则x1+x2=﹣,x1x2=﹣
y1+y2=k(x1+x2)+2=
由点M在曲线E上,知(x1+x2)2+=1,
,解得k2=2.
这时|AB|===
原点到直线l的距离d==
平行四边形OAMB的面积S=|AB|d=

举一反三
已知椭圆右顶点与右焦点的距离为,短轴长为
(I)求椭圆的方程;
(Ⅱ)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为,求直线AB的方程.
题型:河南省模拟题难度:| 查看答案
圆有如下两个性质:(1)圆上任意一点与任意不过该点的圆的直径的两端点的连线的斜率(若斜率存在)之积为定值-1;(2)圆的任意一条弦的中点与圆心的连线的斜率(若斜率存在)与该弦的斜率(若斜率存在)之积为定值-1。
(Ⅰ)试探究:椭圆上的任意一点与任意过椭圆中心但不过该点的弦的端点连线的斜率(若斜率存在)之积是否为定值,若是请求出该定值;
(Ⅱ)写出类比圆的性质(2)得到的椭圆的类似性质,并证明之。
题型:湖北省模拟题难度:| 查看答案
若F1、F2分别是椭圆在左、右焦点,P是该椭圆上的一个动点,且
(1)求出这个椭圆的方程;
(2)是否存在过定点N(0,2)的直线l与椭圆交于不同的两点A、B,使∠AOB=90°(其中O为坐标原点)?若存在,求出直线l的斜率k,若不存在,请说明理由.
题型:河北省模拟题难度:| 查看答案
在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q. (I)求k的取值范围;
(II)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量共线?如果存在,求k值;如果不存在,请说明理由.
题型:福建省月考题难度:| 查看答案
在直角坐标系xOy中,椭圆C1=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
题型:云南省模拟题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.