.(本题14分)过点的椭圆()的离心率为,椭圆与轴的交于两点(,),(,),过点的直线与椭圆交于另一点,并与轴交于点,直线与直线叫与点.(I)当直线过椭圆右交点

.(本题14分)过点的椭圆()的离心率为,椭圆与轴的交于两点(,),(,),过点的直线与椭圆交于另一点,并与轴交于点,直线与直线叫与点.(I)当直线过椭圆右交点

题型:不详难度:来源:
.(本题14分)过点的椭圆)的离心率为,椭圆与轴的交于两点),),过点的直线与椭圆交于另一点,并与轴交于点,直线与直线叫与点
(I)当直线过椭圆右交点时,求线段的长;
(II)当点异于两点时,求证:为定值.

答案
解:(I)由已知得,解得
∴ 椭圆方程为 ,--------------------3分
右焦点为,直线的方程为
代入椭圆方程化简得 ,∴ , -------4分
代入直线的方程得 ,所以,D点坐标为.-------5分
        -------------------7分
(II))当直线轴垂直时与题意不符,                -------------------8分
当直线轴不垂直时,设直线的方程为 )-------9分
代入椭圆方程化简得
解得,                     
代入直线的方程得          
所以,D点坐标为           -------------------11分
又直线的方程为 ,直线的方程为
联立解得,              -----------------------------13分
因此点的坐标为(),又点坐标为(),
所以
为定值.          -----------------------------14分
解析

举一反三
,的长轴是短轴的2倍,则m=       
题型:不详难度:| 查看答案
.已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2.
(1)求和抛物线C的方程;
(2)若P为抛物线C上的动点,求的最小值;
(3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

题型:不详难度:| 查看答案
(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到
两个焦点的距离之和为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线与该椭圆交于点,
为邻边作平行四边形,求该平行四边形对角线的长度
的最大值.
题型:不详难度:| 查看答案
..(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.
已知椭圆上有一个顶点到两个焦点之间的距离分别为
(1)求椭圆的方程;
(2)如果直线与椭圆相交于,若,证明直线与直线的交点必在一条确定的双曲线上;
(3)过点作直线(与轴不垂直)与椭圆交于两点,与轴交于点,若,证明:为定值。
题型:不详难度:| 查看答案
在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过轴的垂线,垂足为,连接,
(1)若直线的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;
(2)若的延长线与椭圆的交点,求证:.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.