若直线与椭圆恒有公共点,求实数的取值范围

若直线与椭圆恒有公共点,求实数的取值范围

题型:不详难度:来源:
若直线与椭圆恒有公共点,求实数的取值范围
答案
解法一:
可得

解法二:直线恒过一定点
时,椭圆焦点在轴上,短半轴长,要使直线与椭圆恒有交点则
时,椭圆焦点在轴上,长半轴长可保证直线与椭圆恒有交点即
综述:
解法三:直线恒过一定点
要使直线与椭圆恒有交点,即要保证定点在椭圆内部

解析
由直线方程与椭圆方程联立的方程组解的情况直接导致两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去得到关于的一元二次方程,则(1)直线与椭圆相交(2)直线与椭圆相切(3)直线与椭圆相离,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具。或者可首先判断直线是否过定点,并且初定定点在椭圆内、外还是干脆就在椭圆上,然后借助曲线特征判断
举一反三

已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于两点,证明直线与直线的交点在直线上.
题型:不详难度:| 查看答案
已知椭圆的焦点是F1F2P是椭圆上的一个动点,如果延长F1PQ,使得|PQ|=|PF2|,那么动点Q的轨迹是(    )
A.圆B.椭圆C.双曲线的一支D.抛物线

题型:不详难度:| 查看答案
已知ABC是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过BC作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.
题型:不详难度:| 查看答案
已知椭圆=1(ab>0),点P为其上一点,F1F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为QF2Ql于点R.

(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l: y=k(x+a)与曲线C相交于AB两点,当△AOB的面积取得最大值时,求k的值.
题型:不详难度:| 查看答案
过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于AB两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.