已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )A.圆B.椭圆C.双曲线的一支D
题型:不详难度:来源:
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( ) |
答案
A |
解析
∵|PF1|+|PF2|=2a,|PQ|=|PF2|, ∴|PF1|+|PF2|=|PF1|+|PQ|=2a, 即|F1Q|=2a,∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆. |
举一反三
已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程. |
已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.
(1)当P点在椭圆上运动时,求R形成的轨迹方程; (2)设点R形成的曲线为C,直线l: y=k(x+a)与曲线C相交于A、B两点,当△AOB的面积取得最大值时,求k的值. |
过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程. |
已知中心在原点,顶点A1、A2在x轴上,离心率e=的双曲线过点P(6,6). (1)求双曲线方程. (2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点M、N,问:是否存在直线l,使G平分线段MN,证明你的结论. |
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件: |F2A|、|F2B|、|F2C|成等差数列.
(1)求该弦椭圆的方程; (2)求弦AC中点的横坐标; (3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围. |
最新试题
热门考点