(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点,点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物

(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点,点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物

题型:不详难度:来源:
(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设为抛物线上的一个定点,过作抛物线的两条互相垂直的弦,,求证:恒过定点.(3)直线与抛物线交于,两点,在抛物线上是否存在点,使得△为以为斜边的直角三角形.
答案
(1). (2)见解析;(3)
解析
(1)设抛物线的方程为,则此准线方程为,根据抛物线的定义可知,从而可知p=1,所以抛物线方程为.

(2) 由题意知直线轴不平行,设所在直线方程为显然P、Q的纵坐标就是此方程的两个根,然后再由韦达定理可知 根据进而得到 所以 展开整理将韦达定理代入即可得到直线的方程为据此可判定直线PQ一定过定点.
(3)在(2)的基础上可知若存在N点,则点必在直线上,所以,因而点N是直线与抛物线的交点,然后消去y得到关于x的一元二次方程,根据判别式判断此方程组是否有解即可.
(1)由题意可设抛物线的方程为,则由抛物线的定义可得,即,所以抛物线的方程为 .     ……4分
(2)由题意知直线轴不平行,设所在直线方程为
其中
 
 所以


所以直线的方程为
 
(3)假设
上,
的解,消去
 
举一反三
已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____      
题型:不详难度:| 查看答案
已知抛物线的准线与圆相切,则的值为
A.B.1C.2D.4

题型:不详难度:| 查看答案
顶点在原点,对称轴是y轴,并且经过点的抛物线方程为    
题型:不详难度:| 查看答案
已知抛物线的准线与圆相切,则的值为(     ).
A.B.1C.2D.4

题型:不详难度:| 查看答案
已知抛物线方程,则抛物线的焦点坐标为          .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.